The history of computer science began long before the modern discipline of computer science that emerged in the 20th century, . The progression, from mechanical inventions and mathematical theories towards the modern concepts and machines, formed a main academic field and the basis of a massive worldwide industry.
The Antikythera mechanism is believed to be the earliest known mechanical analog computer. It was designed to calculate astronomical positions. It was discovered in 1901 in the Antikythera wreck off the Greek island of Antikythera, between Kythera and Crete, and has been dated to c. 100 BCE. Technological artifacts of similar complexity did not reappear until the 14th century, when mechanical astronomical clocks appeared in Europe.
Mechanical analog computing devices appeared a thousand years later in the medieval Islamic world. Examples of devices from this period include the equatorium by Arzachel, the mechanical geared astrolabe by Abū Rayhān al-Bīrūnī, and the torquetum by Jabir ibn Aflah. Muslim engineers built a number of automata, including some musical automata that could be 'programmed' to play different musical patterns. These devices were developed by the Banū Mūsā brothers and Al-Jazari Muslim mathematicians also made important advances in cryptography, such as the development of cryptanalysis and frequency analysis by Alkindus
When John Napier discovered logarithms for computational purposes in the early 17th century, there followed a period of considerable progress by inventors and scientists in making calculating tools. In 1623 Wilhelm Schickard designed a calculating machine, but abandoned the project, when the prototype he had started building was destroyed by a fire in 1624. Around 1640, Blaise Pascal, a leading French mathematician, constructed the first mechanical adding device based on a design described by Greek mathematician Hero of Alexandria. Then in 1672 Gottfried Wilhelm Leibnitz invented the Stepped Reckoner which he completed in 1694
In 1837 Charles Babbage first described his Analytical Engine which is accepted as the first design for a modern computer. The analytical engine had expandable memory, an arithmetic unit, and logic processing capabilities able to interpret a programming language with loops and conditional branching. Although never built, the design has been studied extensively and is understood to be Turing complete. The analytical engine would have had a memory capacity of less than 1 kilobyte of memory and a clock speed of less than 10 Hertz
Binary logic
In 1703, Gottfried Wilhelm Leibnitz developed logic in a formal, mathematical sense with his writings on the binary numeral system. In his system, the ones and zeros also represent true and false values or on and off states. But it took more than a century before George Boole published his Boolean algebra in 1854 with a complete system that allowed computational processes to be mathematically modeled
By this time, the first mechanical devices driven by a binary pattern had been invented. The industrial revolution had driven forward the mechanization of many tasks, and this included weaving. Punched cards controlled Joseph Marie Jacquard's loom in 1801, where a hole punched in the card indicated a binary one and an unpunched spot indicated a binary zero. Jacquard's loom was far from being a computer, but it did illustrate that machines could be driven by binary systems
Birth of computer
Before the 1920s, computers were human clerks that performed computations. They were usually under the lead of a physicist. Many thousands of computers were employed in commerce, government, and research establishments. and they were known to have a degree in calculus. Some performed astronomical calculations for calendars
After the 1920s, the expression computing machine referred to any machine that performed the work of a human computer, especially those in accordance with effective methods of the Church-Turing thesis. The thesis states that a mathematical method is effective if it could be set out as a list of instructions able to be followed by a human clerk with paper and pencil, for as long as necessary, and without ingenuity or insight
Machines that computed with continuous values became known as the analog kind. They used machinery that represented continuous numeric quantities, like the angle of a shaft rotation or difference in electrical potential. Digital machinery, in contrast to analog, were able to render a state of a numeric value and store each individual digit. Digital machinery used difference engines or relays before the invention of faster memory devices
The phrase computing machine gradually gave away, after the late 1940s, to just computer as the onset of electronic digital machinery became common. These computers were able to perform the calculations that were performed by the previous human clerks
Since the values stored by digital machines were not bound to physical properties like analog devices, a logical computer, based on digital equipment, was able to do anything that could be described "purely mechanical." The theoretical Turing Machine, created by Alan Turing, is a hypothetical device theorized in order to study the properties of such hardware